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ABSTRACT: High density closed-cell polyethylene foams
(450-950 kg/m®) were prepared by compression molding,
and their flexural and tensile moduli were measured in
order to study (1) the normalized modulus as a function of
the normalized density, and (2) the effect of thin skins on
flexural and tensile moduli. For the flexural data, it was
found that the model of Gonzalez and the I-beam model of
Hobbs predicted the data very well in the range of void
volume fractions under study (0-55%). For the tensile data,

it was found that a combination of the differential scheme or
the square power-law model with the sandwich structure
gave the best predictions. Finally, we found that thin skins
have an important effect on the flexural properties of poly-
mer foams, while they seem to have a negligible effect on the
tensile properties. © 2003 Wiley Periodicals, Inc. ] Appl Polym Sci
90: 2139-2149, 2003
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INTRODUCTION

Flexural and tensile properties of high density poly-
mer foams are important for the design of structural
materials. This is the last paper in this series on the
mechanical and morphological properties of high den-
sity polyethylene (HDPE) foams.' In the second part
of this series,” we compared Young’s modulus with
different models for uniform foams. Of all the models
used in our comparison, it was found that the differ-
ential scheme and Moore’s simple empirical equation®
gave similar results and were best at predicting the
data in the range of void volume fractions under study
(0-55%). In this paper, a focus is made on the prop-
erties of uniform and structural foams, which are com-
posed of foamed cores enclosed by unfoamed skins.
It is known that the elastic moduli are different for
different types of deformation (flexural vs. tensile) and
measurement conditions. The flexural and tensile
properties of foams are now investigated and com-
pared with available models from the literature. After
careful microscopic measurement, our HDPE foams
were found to have very thin, but not negligible, skin
layers on both sides. It is thus the objective of this
paper to determine the effect of these skin layers on
the flexural and tensile moduli of these structural
foams. Flexural moduli of structural foams have been
the subject of several reports. Most of the literature on
the subject of the flexural moduli of polymer foams
relates the stiffness of a rectangular beam to the den-
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sity of the foam.>'* Hartsock® assumed that the stiff-
ness of a sandwich structure is only related to the
contribution of the skin layers. From that, the maxi-
mum deflection, maximum face stress, and maximum
core shear stress were obtained. Throne®” suggested
that for structural foams, the flexural modulus was the
average modulus through integration across the foam
thickness from a relationship between the local mod-
ulus and the local density. However, such a depen-
dence of local density on position is difficult to mea-
sure. Gonzalez® assumed that the thickness of the
intermediate layer is very low compared with the core
part, and structural foams can be treated as two-com-
ponent beams that have skin layers of modulus equal
to that of the matrix and a core with uniform modulus,
the sandwich structure. Based on this assumption, the
stiffness of structural foams is simply the sum of the
stiffness of the core and skin parts. Hobbs’ used sev-
eral equivalent one-component beams to account for
local variation in stiffness, and then obtained the de-
flection of structural foams under load. Tensile moduli
of structural foams have not been as thoroughly stud-
ied, but are also related to morphology.'** Throne
gave an expression for the tensile modulus of a
foamed sandwich structure in his book on thermo-
plastic foams."® Stokes and co-workers'*'> gave the
average elastic modulus for rectangular bars of struc-
tural foams. The average modulus of structural foams
was related to the local elastic modulus.

Based on the amount of work available in the litera-
ture, several different approaches are used here to ap-
proximate the flexural and tensile moduli of polymer
foams. In this study, HDPE foams were prepared using
a compression molding technique to determine which
models would best represent our measurements.
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Figure 1 Sample dimensions for three-point bending tests.

EXPERIMENTAL
Polymer and sample preparation

Four HDPE foams with different molecular weights
were used in this study. Foam plates with dimensions
of 60 X 60 X 2.8-3.4 mm were obtained by compres-
sion molding. More details can be obtained in the first
paper of this series."

Skin thickness of the foams

Two specimens were used to measure the skin thick-
ness for each condition. A Spot-Insight digital camera
and software from Diagnostic Instruments were used
to take pictures via an Olympus SZ-6 stereomicro-
scope. Quantitative measurements were performed
using Image-Pro Plus image analysis software from
Media Cybernetics (Silver Spring, MD). The procedure
was as follows: (1) two photographs of the skin layers
were taken for each specimen, (2) the distance be-
tween the bubbles closest to the skin and the surface
was measured, (3) the distance measurements were
averaged to obtain a value for the skin layer and the
standard deviation was reported, and (4) the skin
thickness of each specimen was divided by the thick-
ness of the specimen to obtain the average ratio of skin
to foam thickness.

Flexural measurements

Room temperature flexural properties were evaluated
as a function of foam density using a Rheometrics
Solids Analyzer RSA II with a transducer of 10 N. The
samples were cut in rectangular shapes, as shown in
Figure 1. The recommended dimensions for length (L),
width (B), and thickness (T) are 52 mm, 8-10 mm,
and 2.8-3.4 mm, respectively. A three-point bending
fixture was used. The following conditions were
also used: a temperature of 25°C, a strain rate of
0.004 sec” !, and a measuring time of 2 s. The stress (o)
and strain (¢) were determined by the following equa-

tions: %17

3L

o= 7ZBT2F (1)
6T

€ = F D (2)
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where F is the measured force and D is the displace-
ment of the transducer.

Tensile measurements

Room temperature uniaxial tension properties were
evaluated as a function of foam density using an In-
stron 5565 tester with a 500 N load cell. The samples
were cut in a type IV format according to ASTM
D-638. Further details are given in the second paper of
this series.”

Flexural modulus
Stiffness of materials

A beam of material in a three-point bending test is
shown in Figure 2. The relation between curvatures at
any point in the beam to the beading moment at that
point is

dy M dp
W:@+E (3)

where vy is the deflection from the neutral axis at any
distance x, and M is the bending moment, usually
expressed as a function of the distance x and the
applied external loads. The product EI is the stiffness
of the beam, and dB/dx is the shear strain in the beam.

Stokes and coworkers'*'® found that the effect of
shear stress is proportional to the ratio of thickness
over the square of the length of the specimen (T/L?).
This effect can become negligible by choosing specific
dimensions. This is the case when the ratio L/T is
higher than 18. Neglecting shear, eq. (3) simplifies to
the well known expression®'®~2°

i~ (ED (4)

If the beam is made of materials with different moduli,
the stiffness of a symmetrical rectangular beam is'®

1/2)T
@D=2j E(y)y*B(y)dy (5)
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Figure 2 Force diagram of a three-point bending test.
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TABLE 1
Relationship Between Power Index of Eq. (12) and Poisson Ratio

v, 0.02 0.06 0.10 0.12 0.16 0.20 0.22 0.26
n 1.94 1.96 1.97 1.98 1.99 2.00 2.00 2.01
7 0.30 0.32 0.36 0.40 0.42 0.46 0.49 0.495
n 2.01 2.00 2.00 1.98 1.97 1.95 1.93 1.93
where E(y) and B(y) are the elastic modulus and the 2 Ji/2t E(y)By’dy 24 JiT E(y)y*dy
width of the beam at a point y, respectively. The Ey= BT?/12 = I (11)

moment of inertia for a symmetrical beam made of the
same material is defined as

/271
[=2 f y*B(y)dy (6)
0

If the beam is made of a material with a uniform
modulus, the stiffness from eq. (5) becomes the prod-
uct of the elastic modulus (E) and moment of inertia

(D
Integration of eq. (4) for a rectangular beam in three-
point bending gives®!*°

3

FL
(EDy. = g5 7)

where y, is the absolute value of the central deflection.
For a sample made of the same material, the moment
of inertia for a rectangular cross-section (constant
width and thickness) is obtained from eq. (5) as

1/2)T
I1=2 j y*B(y)dy = BT®/12 (8)
0

Substituting eq. (8) into eq. (7) gives the modulus as

FL®

For three-point bending measurements, the flexural
modulus obtained from the ratio of stress to strain
[egs. (1) and (2)] gives

o 3LF/2BT*  FL?
“ & 6TD/L*>  4DBT®

(10)

Because the displacement of the transducer (D) mea-
sures directly v, eq. (10) is exactly the same as eq. (9).
This means that for three-point bending experiments,
the value of stiffness is the product of the average
modulus and the moment of inertia. The actual stiff-
ness from eq. (5) can be used to calculate the average
modulus measured as

where E is the modulus measured from a three-point
bending experiment. This equation is similar to Kha-
khar and Joseph’s approach.!

If the beam is made of a material with uniform
density and modulus, the measured modulus is the
elastic modulus. If the beam is made of materials with
different moduli (sandwich-like structure), the modu-
lus measured by the three-point bending experiment
is not the elastic modulus, but an average flexural
modulus that needs to be related to the structure of the
beam. In the next section, some models are developed
for foamed materials.

Models for uniform foams

For uniform foams, the modulus is constant at any
point in the beam and is given by eq. (10). We have
already discussed the models for the elastic moduli of
two phase composites with spherical inclusions in the
second part of this series.” The differential scheme and
Moore’s simple empirical equation (square power-
law) best predicted the data in the range of void
volume fractions (f) under study. The model is given

by

pf)n (1.93=n=2.01) (12)

E ,
ma-pr=(
where 7 is a power-law index, which is a function of
the Poisson ratio of the matrix, as shown in Table I. In
our study, the Poisson ratio for polyethylene is taken
to be 0.34.22 Eq. (12) is a general equation similar to the
simple empirical equation of Moore,* which uses a
value of 2 for n:

Ef~ > & 2

Flexural modulus models for structural foams

To determine the mechanical properties of a structural
foam, it is necessary to take into account the effect
produced by the non-uniform density across the foam
section, the skin and core density. This is important
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Figure 3 Equivalent beam cross sections for structural
foams: (I) Cross-section of sandwich structure, (II-IV) Cross
section of one-component beams; where 8ris foam thickness,
8, is thickness of core of foam, &, is thickness of skin layer, B
is width of beam and B, is equivalent width [B, = B(E./E,)].

because foams having the same overall density will
have different mechanical properties based on the
density difference between the skin and core, skin
thickness, and other morphological parameters like
cell size, density, and distribution.

For theoretical calculations, structural foams can be
treated as two-component beams having skin layers of
modulus equal to the matrix modulus, and a core
section of uniform modulus, like the sandwich struc-
ture [Fig. 3(I)] of Gonzalez.® Hobbs’ used equivalent
one component beams to account for local variation in
stiffness [Fig. 3(II-IV)]. Throne®” assumed that for
structural foams, the flexural modulus should be the
average modulus through integration across the foam
cross-section. We will now described each approach.

Gonzalez approach

Gonzalez® assumed that the intermediate zone is much
smaller than the core zone. A structural foam structure is
simplified as a three-layer panel like a sandwich struc-
ture [Fig. 3(I)]. The stiffness of such a beam (El); is the
sum of the stiffness of the core and the skin:

(ED¢= (EI). + (ED), (14)

From eq. (11), the average flexural modulus is ob-
tained:

2 fél/z)T E(y)ByZdy
B} /12

ESF,f—l =

24 [y Edy + 24 [1733 Enydy
5
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=E, - (2;)3(15,,, ~E,) (15)

where Egp, ; is the average flexural modulus mea-
sured in three-point bending, E, is modulus of core
part, E,, is modulus of matrix, 8, is thickness of core
part, and §; is thickness of the structural foam.

According to this sandwich structure model, the
density of the core is assumed to be uniform, and that
of that of the skin layer is equal to the matrix. The
density of the core (p.) can be obtained via a mass
balance:

prd = pdc + 28,p, = pS. + (8 = 8)p,  (16)

The normalized density of the core is expressed as:

Pc 5f< Pf)
—=1-L11-— 17
pm 8C pm ( )

% R
“1-Jn-a-pl=1-gs

The normalized modulus of the core is obtained by
substitution of eq. (17) into eq. (12).

fEC ~ (P ' ={1- if ' 1 2.01 1
~ =n<=
E, o 5, (1.93=n=2.01) (18)

The average normalized flexural modulus of beam is
then obtained after substitution of eq. (18) into eq. (15)
to give

ESF,ffl 8c 3 85 3 8] &
E,,,—l‘(sf) e\ s S
(1.93=n=2.01) (19)

Hobbs approach

The stiffness of a structural foam beam (EI); should be
the same as that of a one-component equivalent beam

(EDmoders @s shown in Figure 3:

(EI)f: (EI)model (20)

Using eq. (12), several expressions of the average flex-
ural modulus of a structural foam were obtained for
the Hobbs models defining an equivalent width as B,
= B(E./E,,) to give

2 "™ E,y*Budy + 2 [)0)5 Eny*Bdy 8 8

SEf~11 =

B&}/12

- Em (Ec/Em) §;+ 1 —87;; (21)
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20" B Sy v+ Be|dy + 2 J§A2 Eny By
E = 2" _E 1 i E 22
SEf-II1 — BS?/lZ - 4:6; + - 4:78? m ( )
5.\?(B — B,8?
2 [/ F Bo2gy + 2 [U/208) Em( + E) ( o+ Bg)d
Lo vy + 25, P2 e YR B Gry)@ie )
SEf-IV B&}/12 4 8 "
(23)
According to the I-beam model [Fig. 3(II)], the density P 8 ps
of the core of the structural foam is uniform and E: 1- 5. <1 - pm) (25)

obtained from the following expression:

(/2 Em(pc/pm)n o
0

= pcsc + pm(ﬁf - 86) (24)

(Ew = Enlpe/ o)1 1 + Enlpe/ pu)'
=8,

According to model III in Figure 3, the density of the
core increases from the neutral axis to the intersection
with the skin layer. The modulus increases linearly
from the neutral axis to matrix modulus value at the
intersection of core and skin sections:

1/n

(1/2)8c
pdy =2 J Pm
0

To simplify and solve eq. (26), we set 1 equal to 2:

1/2

(1/2)8¢ y
pedy =2 pu)[1 = (pc/ p)*] 77—+ (pc/ pu)?
1
0

30

Performing integration gives

5. ~ % 1- (pc/pm)3
Pror= P3| 1= (p./ p)?

:|8C + pm(af - 8t:) (28)

pe 1 =3f+8./8+ \BBf— 8./8)(f — 35./8)
Pm 4 6C/af

(29)

Because the core density is real and positive, the vol-
ume fraction of voids in structural foams (f) must
satisfy this condition: f = %80/ 8 This indicates that
this model cannot be used when the volume fraction
of voids is higher than 0.32, even though the ratio of
skin layers to foam thickness is very small (0.05).

For the modified I-beam model [Fig. 3(IV)], the core
density is assumed to be uniform, but different from
that of the skin layers. The modulus increases linearly,
from the core modulus at the intersection of the core

ET’I

dy + pm(af - 85) (26)

and layer parts, to the matrix modulus outside the
skin:

pféf = pcac
1/n

n Y n
s [Em - Em(pc/pm) ] g + Em(pf/pm)
+2 J P E, dy
0

(30)

Applying the same transformation as in eq. (26) gives

Bs
0

y 1/2
X pm{[l = (pe/pu)’] 5+ (pc/pm)2} dy (31)
and integration gives:

2 [1 = (p/ pu)’

pds = pcde + 3 1—(Pc/l)n1)2] pu(8— 8) (32)

&_13pf/pm—2—85/8f+ \/K

o 2 5./8; + 2 (33)



2144

where

A =9(8./8)* + 6(5./8)(ps/ pu) + 12(5./ )

Finally, the normalized moduli of the core were ob-
tained for different models after substitution of the
normalized density of egs. (25), (29), and (33) into eq.
(12). For the I-beam model, the normalized modulus is

E. pf)n— =28 Goz=n=201) (34
E, \p. 3, (1.93=n=2.01) (34)

For model III in Figure 3

E. (1 —3f+8./8+ \3(3f — 8./8)(f — 330/@))"
E, \4 8./ 8

(1.93 =n =2.01) (35)

For the modified I-beam model

E. (1 3p;/ pn—2— 8./8+ A

E, \2 5./ 8+ 2 ) (36)

Several expressions for the average normalized flex-
ural modulus of different models were obtained
through substitution of normalized core modulus of
egs. (34), (35), and (36) into egs. (21), (22), and (23),
respectively.

For the I-beam model

3

1 8f>n1 O 37
gcf’L 87} (37)

Esrpnr 52
E, 8?

This equation is exactly the same as eq. (19) from
Gonzalez’s approach. This means that the I-beam
model of Hobbs is equivalent to the sandwich struc-
ture model of Gonzalez.

For model III in Figure 3

ESF,f—IH
Em
B (1 —3f+8,/8+ \3G3f — 8./8)(f — 35./8)\" &
S \4 8./ 8 48}
63
+1- i (38)

And for the modified I-beam model

ZHANG, RODRIGUE, AND AIT-KADI

Esppv 1 3ps/ pw— 2 — 8./ 8 + \/K ! _ 1

E, |4 2(5./6,+ 2) 4
" (8. + 8)(87 + &)

83

f

+1 (39)

Throne’s method

Throne” assumed that the modulus of structural foams
in flexion is the average modulus of the beam obtained
through integration across the foam cross-section:

(1/2)8f (1/2)8
ESF,f:f E(y)dy/J dy (40)
0 0

Throne assumed that the density of structural foams
increased continuously from the neutral axis to the
surface of the sample even if it is very difficult to
measure the local density of structural foams. Here we
use Throne’s basic method to calculate the modulus
with several simple models.

The sandwich structure model [Fig. 3(I)] assumes
that the structural foam consists of a uniform core and
uniform skin layers. The average modulus is calcu-
lated using eq. (40):

8¢ s o
0 0 0

Substitution of eq. (34) into eq. (41) gives

Esepr_ ({8 8(, 3
E, 5) & 5.

(1.93 = n =2.01) (42)

The I-beam model also assumes that structural foams
consist of a uniform core and uniform skin layers. The
average modulus is thus the same as that of the sand-
wich structure model.

On the other hand, model III assumes that structural
foams consist of uniform skin layers with a core in
which the modulus increases linearly from a neutral
axis to matrix the intersection between the core and
skin layers. The average modulus using eq. (40) is

Esrfm

as [p _F /2%
= 1 y+ E.|dy + E,dy
0

5 0, (1/2)8¢

(1/2)8f 85 85
- dy:Em<1_25f>+E525f (43)
0
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The normalized average modulus was obtained after
placing into eq. (43) the core modulus from eq. (35):

Esppomn |1 —3f+8./8+ \/3(3f_ 8./ 8)(f —35./8) |"
Em a 4 SC/Sf

2. 1 &) 44
x§@+ 25, (44)

The modified I-beam model assumes that structural
foams consist of a uniform core and skins, and that the
modulus increases linearly from a core modulus at the
intersection between core and skin to the matrix mod-
ulus at the surface:

SS SS Em - EC

Egrfpv = J Ecdy+2f 5 y+ E |dy+
0 0 ¢
'f&d =E 1-+8C +E 1_2 (45)
"), Y=5 2T 28 T P2 2,

The normalized average modulus is obtained after
placing into eq. (45) the core modulus from eq. (36):

Esepv (1,8 lmwpm—z—aJ@+\E”
E, 2 8./ 8+ 2

2" 25,
15,
2725 (4O

Tensile modulus models of structural foams

For structural foams with rectangular cross-sections,
the tensile modulus can be obtained by assuming a
constant strain in the skin and core sections via this
model:"

o
Em@If E(y)dy (47)
0

where E; is tensile modulus of the structural foam, J;

is thickness of beam, and E(y) is the local modulus at
y. When the beam is symmetrical with respect to the
neutral axis, the average tensile modulus is obtained

by

2 [¥2 E(y)dy
£T 8f (48)

This equation is similar to eq. (40) for the flexural
modulus. The normalized modulus becomes

2145
E(y)
E 2 j‘gl/z £ d]/
f, T _ m (49)
Em 8f

Sandwich structure model

Using eq. (49), the normalized tensile modulus for the
sandwich structure foam model is

E E
(5:/2) —¢ (8r/2) =m
Eﬂ_zfo Emdy+2f dy

6/2) F
E, 8

= E686+-(1 Bj (50)
E, & 8

The average normalized tensile modulus of the struc-
tural foams as a function of the normalized density is
obtained after the substitution of eq. (18) into eq. (50):

ESF,T*I 6f néc 85
E. —( —gcf gf—i- 1—§f 1.93=n=2.01

(51)

which is similar to eq. (42).

Other models

Because the I-beam model is actually the same as the
sandwich structure model, and model III is only valid
for very low volume fractions, these models will not
be discussed further. On the other hand, the modified
I-beam model of eq. (49) can be used to give

ESF,T—IV _ o Ec & (Em - Ec)]//ﬁq + Ec
E, —[J Emdy+2f E, dy +
0

0
G Ef1 8\ 1 e
+ f—Fm 5-‘1-278](-}- 5_273/( (52)

The normalized average modulus was obtained after
placing into eq. (52) the core modulus from eq. (36):

Espow _ (1 8:\(13p/py—2=8/8+ A\
E, 2 8./8+2

2" 25,
1 s
3725 63

RESULTS AND DISCUSSION
Thickness of HDPE foam skins

With the compression molding process, the foams
usually have a very thin skin layer on each side. The
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TABLE 11
Ratio of Skin Thickness to Foam Thickness (%)

ACA (%) Skin J60-1700-173 A60-70-162 G60-110 HBWb555Ac¢
1.0 Upper — 2.18 = 0.67 2.31 £ 0.25 1.96 = 0.32
Lower — 2.31 = 0.31 245 + 0.34 1.95 = 0.32

15 Upper 2.59 + 0.35 1.50 = 0.13 2.10 = 0.14 1.98 = 0.44
Lower 2.51 £ 0.34 2.11 = 0.29 2.06 = 0.39 1.87 = 0.23

2.0 Upper 3.02 = 0.50 1.80 = 0.24 252 +0.24 241 =043
Lower 2.62 +0.23 1.79 = 0.22 1.40 = 0.19 2.00 = 0.26

25 Upper 248 + 0.25 1.66 = 0.11 1.59 £ 0.15 1.71 £ 0.07
Lower 2.22 +0.19 1.50 = 0.13 1.67 = 0.29 1.84 = 0.20

3.0 Upper 217 =0.42 1.55 = 0.16 1.83 = 0.32 1.54 = 0.11
Lower 227 =0.22 1.53 = 0.13 1.82 = 0.31 1.61 £ 0.14

ratio of the skin thickness to the foam thickness is
presented in Table II for each condition tested. From
Table II, it can be seen that the average skin thickness
is small, symmetrical, and almost constant for each
polyethylene. The average values of both skins for
J60-1700-173, A60-70-162, G60-110, and HBW555Ac at
different blowing agent concentrations are: 5.0 = 0.6%,
3.5 = 0.4%, 4.0 = 0.5% and 3.8 = 0.5%, respectively.
This gives a total average thickness of 4.0 = 0.5% for
all foams, and an average relative core thickness (6./
&) of 96.0 = 0.5%.

Flexural properties

The flexural modulus of HDPE foams as a function of
normalized density is shown in Figure 4. Because the
foam modulus is related to the matrix modulus, the
normalized modulus (ratio of foam modulus to un-
foamed polymer matrix modulus) and normalized
density (ratio of foam density to unfoamed polymer
matrix density) are used to analyze the relationship
between modulus and density in order to eliminate
the relative effect of the unfoamed polymer matrix on
the foam. The normalized modulus as function of

2000
®  JB0-1700-173 '
= o A60-70-162 {n
O a0l | A& ©G80-110
=3 A HBWS55AC
S
£ ;o
B 1200 - % %
=
= 5 j
= A
) L]
5 800 i A
i 4;3
LI I S
400 1 { ! 1 {
0.4 0.5 06 0.7 0.8 0.9 1.0
Density (g/cm 3)

Figure 4 Flexural modulus as a function of density.

normalized density is shown in Figure 5. This trans-
formation produces a single curve.

Comparison of flexural models

All of the models described contain simplifying as-
sumptions on the structure and the distribution of
voids that are likely unrealistic. Their validity must be
judged, at least partially, in terms of how closely they
predict the experimental data between the normalized
modulus and normalized density.

Structural foam models were first used to evaluate
the effect of skin thickness on flexural modulus. In
each case, the calculations were made using a v,, value
of 0.34, as described earlier. The average deviations of
each model at different skin thickness ratios are pre-
sented in Table III. Values for &,/ Sf were changed
between 95% and 97% to determine the effect of this
parameter. The results show that the minimum devi-
ation is around 96%, which confirms the optical mi-
croscopy measurements. For this reason, a value for
5./ Sf of 0.96 will be used in the following discussion.

10 a
" m J60-1700-173
i o AB0-70-162
3 osl | 4 o600
3 A HBWS555Ac %
=
= 14
2 :

06
3 3
L
3 ts
N o4} ég
£ 1]
e
]
2

0.2 L L

0.4 0.6 0.8 10

Normalized Density

Figure 5 Normalized flexural modulus as a function of
normalized density.
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TABLE III
Average Deviation of Different Models for Normalized
Flexural Modulus

8./5
Equation ~ 97.0%  965%  960%  955%  95.0%
19 6.5 6.0 5.8 5.8 6.1
37 6.5 6.0 5.8 5.8 6.1
39 8.9 8.5 8.0 7.6 7.3
2 112 11.0 10.9 10.8 10.6
46 11.7 11.6 11.6 115 115

Gonzalez and hobbs approaches

Figure 6 shows a comparison of the normalized mod-
ulus as a function of the normalized density for both
the Gonzalez and the Hobbs approach. It can be seen
that model III does not fit the data, and when the
volume fraction of the structural foam reaches % 3./ 8
the core modulus at the neutral axis equals zero. The
other models seem to fit the data reasonably well. The
average deviations were found to be 5.8%, 5.8%, and
8.0% for the model of Gonzalez, the I-beam model of
Hobbs, and the modified I-beam model of Hobbs re-
spectively.

Throne’s method

Figure 7 shows a comparison of the normalized mod-
ulus as function of the normalized density using
Throne’s method. From Figure 7, it can be seen that
these predictions seem to underestimate the experi-
mental data. Even though model III seems to fit the
experimental data better, this model has the same
limitation described in the previous section. The aver-
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Normalized Density

Figure 6 Comparison of the normalized flexural modulus
as function of normalized density for Gonzalez and Hobbs
approaches: (- —--) model III of Hobbs, (—) model of
Gonzalez and I-beam model of Hobbs, (- —--) modified I-
beam model of Hobbs.
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Figure 7 Comparison of the normalized flexural modulus
as a function of normalized density for Throne method:
(= +—=+-) model III, (---) model T and II, (—) model IV of
Figure 3.

age deviations were found to be 10.9%, 10.9%, and
11.6% for models I, II, and IV of Figure 3. These higher
deviations are probably related to the fact that
Throne’s method only considers the effect of density
on modulus, but does not consider the effect of den-
sity on stiffness as a whole. For thick skin layers and
high volume fraction of voids, the difference is more
obvious.

Comparison between uniform and structural foam
models

Figure 8 shows the normalized modulus as function of
normalized density using the differential scheme for
uniform foam, Moore’s empirical square law relation,

1.0
= J60-1700-173
08 b O A60-70-162
Y A (G60-110
& HBWSS5AC

Normalized Flexural Modulus

0.0 0.2 0.4 0.6 0.8 10
Normalized Density

Figure 8 Comparison of the normalized flexural modulus
as a function of the normalized density for uniform and
structural foams: (—--) Differential scheme, (—) Gonzalez
approach and I-beam model of Hobbs.
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the Gonzalez approach, and the I-beam model of
Hobbs. The average deviations are 12%, 12%, 5.8%,
and 5.8% respectively. These results indicate that skin
layers, even very small ones, have an important effect
on the flexural modulus of polymer foams.

Tensile modulus

We have also compared different approaches for the
tensile modulus for uniform foams.” The differential
scheme and Moore’s empirical square power-law
models were found the best to represent the tensile
moduli of our closed-cell HDPE foams with an aver-
age deviation of 7.9% for both models. We will now
evaluate whether thin skins have an effect on tensile
modulus.

Table IV shows the average deviations of the differ-
ent tensile modulus models with different thicknesses
of skins (v,, = 0.34). It can be seen that the differences
for values of §./6; between 95 and 97% is almost
insignificant. Once again, the minimum deviation is
around §./6; = 96%.

Figure 9 shows excellent agreement between the
models and the experimental data. The average devi-
ations are 7.3%, 7.7%, 7.9%, and 7.9% for the differen-
tial scheme of a sandwich, the differential scheme of
the modified I-beam structure, the differential scheme
for uniform foam, and Moore’s empirical model for
uniform foam respectively. For structural foam mod-
els, the elastic modulus does not reach zero when the
void volume fraction reaches one because these struc-
tural foam models consist of skin layers and a foamed
core. The void volume fraction cannot reach unity
even though the core foam’s void volume fraction
reaches 1 (two skin layers will remain to support the
load). The difference in the average deviation for these
three models is less than 0.7%. This means that very
thin skin layers for HDPE foams have a very small
effect on the tensile modulus.

CONCLUSIONS

Flexural and tensile moduli of uniform and structural
closed-cell HDPE foams were measured and com-
pared to different models from the literature.

For the flexural modulus, the differential scheme
and Moore’s empirical square power-law models for

TABLE IV
Average Deviation of Different Models for Normalized
Tensile Modulus

8./
Equation  97.0%  965%  960%  955%  95.0%
51 7.4 7.4 73 7.4 7.4
53 7.7 7.7 7.7 7.6 7.6
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Figure 9 Comparison of the normalized tensile modulus as
a function of the normalized density for tensile models:
(= ——-) differential scheme and Moore’s empirical equation,
(--------- ) eq. (53) for structural foams, (—) eq. (51) for
structural foams.

uniform foams were found to deviate around 12%
from the measurements. On the other hand, Gonza-
lez’s sandwich structure model and Hobbs I-beam
models for structural foams were found to better fit
the data with an average deviation of 5.8%. This re-
duced deviation indicates that, for the flexural prop-
erties of polymer foams, even very thin skins have a
definite effect on the modulus. We also found that
Throne’s method underpredicted our data.

For the tensile modulus, models for uniform and
structural foams were also investigated. For structural
foam models, it was found that a combination of the
differential scheme with the sandwich structure and a
combination of the square power-law model with the
sandwich structure gave the smallest average devia-
tion at 7.3%. For uniform foam models, the differential
scheme and Moore’s empirical square power-law
models also gave a good prediction, with an average
deviation of 7.9%. The difference between structural
and uniform foams is very small (0.7%). This seems to
indicate that very thin skins have little effect on tensile
modulus.
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